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Three-dimensional confinement: WKB revisited
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An alternate formalism is developed to determine the energy eigenvalues of quantum me-
chanical systems, confined within a rigid impenetrable spherical box of radius r0, in the
framework of Wentzel–Kramers–Brillouin (WKB) approximation. Instead of considering the
Langer correction for the centrifugal term, the approach adopted here is that of Hainz and
Grabert: the centrifugal term is expanded perturbatively (in powers of h̄), decomposing it into
2 terms – the classical centrifugal potential and a quantum correction. Hainz and Grabert
found that this method reproduced the exact energies of the hydrogen atom, to the first or-
der in h̄, with all higher order corrections vanishing. In the present study, this formalism is
extended to the case of radial potentials under hard wall confinement, to check whether the
same argument holds good for such confined systems as well. As explicit examples, 3 widely
known potentials are studied, which are of considerable importance in the theoretical treat-
ment of various atomic phenomena involving atomic transitions, namely, the 3-dimensional
harmonic oscillator, the hydrogen atom and the Hulthén potential.

KEY WORDS: WKB approximation, 3-dimensional spatial confinement, radial potentials,
perturbative expansion, centrifugal term, harmonic oscillator, hydrogen atom, Hulthén poten-
tial

1. Introduction

Spatial confinement of electrons in artificial nanostructures, on a scale compa-
rable to their de Broglie wavelength, is a much talked about subject for the past
decade or so [1–7]. Such artificial atoms as they are called because of their quan-
tized energies, undergo radical changes in terms of both physical and chemical prop-
erties, because of their extremely small spatial dimensions, making them very use-
ful in the study of atomic and molecular phenomena [8]. However, the problem with
these so-called quantum wells, quantum wires and quantum dots is that their exact
analytical treatment is not possible in most of the cases. Consequently, various ap-
proximation methods – the variational approach, the shifted 1/N expansion technique,
the modified Airy function (MAF) method, the supersymmetric version of the same
(SMAF), the Wentzel–Kramers–Brillouin (WKB) approximation, its supersymmetric
version (SWKB), etc., – come into the picture [9–18]. The other option is to go for a
numerical solution. Of the several approximation methods, the semiclassical WKB ap-
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proximation technique is a very effective tool, yielding fairly accurate results in various
quantum mechanical problems, where exact solutions are unknown or difficult to find
out. This method gives a good estimate of both the energy eigenvalues as well as eigen-
functions, with the exception of the region near the classical turning points. Though this
approach works well for one-dimensional problems, practical use shows that the stan-
dard leading order WKB approximation always reproduces the exact spectrum for the
solvable spherically-symmetric potentials V (r) if the centrifugal term

VC(r) = l(l + 1)h̄2

2r2

is replaced by the Langer correction term [19]

VL(r) = (l + 1/2)2h̄2

2r2
.

This modification also justifies the WKB expansion of singular potentials like that of the
Coulomb potential, near the origin. However, some authors have attempted to get rid
of this Langer modification (LM), based on nonlinear transformations [20] and super-
symmetry [21]. Though their approach yielded results which are superior to those with
LM, Coulomb-type problems did not fare well. Hainz and Grabert [22] challenged this
common belief and put forward a new method to deal with centrifugal terms in the WKB
approximation.

Since the semiclassical WKB approximation proceeds as a perturbation in pow-
ers of h̄, it was argued in [22] that within this expansion, the centrifugal term can be
decomposed as

Vc(r) = l(l + 1)h̄2

2mr2
= L2

0

2mr2
+ h̄L0

2mr2
(1)

with L0 = h̄l. The first term is the classical centrifugal term, while the second term is
a quantum correction. Thus the quantum correction can be treated as a perturbation and
expanded accordingly. Proceeding along these lines, Hainz and Grabert [22] found that
the semiclassical energy eigenvalues for the hydrogen atom turned out to be exact to the
first order in h̄, with all higher order corrections vanishing. The aim of the present work
is to check whether the same argument holds good for confined systems as well. The
formalism of [22] is extended to the case of radial potentials confined within rigid im-
penetrable spheres of radius r0. As expicit examples, 3 widely known cases are studied,
viz.,

(i) the 3-dimensional harmonic oscillator (HO);

(ii) the hydrogen atom;

(iii) the Hulthén potential;

These potentials are of considerable importance in theoretical treatment of various
atomic phenomena involving atomic transitions. It is observed that this formalism gives
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a better estimate of the energy spectrum than the case with Langer modification, even in
case of spatially confined systems.

The organisation of the paper is as follows. In section 2, the WKB formalism
is extended to include quantum mechanical systems confined radially, expanding the
centrifugal term perturbatively in powers of h̄. In section 3, the approach is applied
explicitly to 3 physically relevant cases, namely, the 3-dimensional harmonic oscillator,
the hydrogen atom, and the Hulthén potential. Section 4 is kept for conclusions and
discussions.

2. Theory

The starting point of the study is the three-dimensional Schrödinger equation for a
radial potential V (r)

d2

dr2
ψ(r)+ 2m

h̄2

[
E − V (r)− l(l + 1)h̄2

2mr2

]
ψ(r) = 0, (2)

where l(l + 1)h̄2 represents the eigenvalues of the square of the angular momentum
operator L2 and m is the mass of the particle. It is worth noting here that the WKB
approximation can be applied only when the de Broglie wavelength λ = h/p (h = 2πh̄)

is changing slowly. With the help of (1) the radial Schrödinger equation (2) can be cast
in the form

d2

dr2
ψ(r)+ 2m

h̄2

[
E − Veff(r)− h̄

L0

2mr2

]
ψ(r) = 0, (3)

where

Veff(r) = V (r)+ L2
0

2mr2
. (4)

In order for the physical system to have a stable bound state (discrete spectrum) it
must have two classical turning points r1 and r2. This gives rise to 3 regions given by

• region 1: 0 < r < r1, V1 > E;

• region 2: r1 < r < r2, E > V1;

• region 3: r > r2, V1 > E,

where

V1(r) = Veff(r)+ h̄
L0

2mr2
. (5)

If one defines �(r) and κ(r), with (κ2 = −�2) by

�(r)=
√

2m

h̄2

{
(E − Veff)− h̄

L0

2mr2

}
, (6)
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κ(r)=
√

2m

h̄2

{
(Veff − E)+ h̄

L0

2mr2

}
(7)

then (3) reduces to {
d2

dr2
− κ2(r)

}
ψ = 0 in regions 1 and 3, (8){

d2

dr2
+ �2(r)

}
ψ = 0 in region 2. (9)

Expanding in powers of h̄, and keeping terms to the first order in h̄, one can write
�(r) and κ(r) as

�(r)��0(r)− L0

2h̄�0r2
, (10)

κ(r)� κ0(r)+ L0

2h̄κ0r2
, (11)

where

�0(r)=
√

2m

h̄2 {E − Veff}, (12)

κ0(r)=
√

2m

h̄2 {Veff − E}, (13)

so that

1√
�(r)
� 1√

�0(r)

{
1+ L0

4h̄�2
0r2

}
, (14)

1√
κ(r)
� 1√

κ0(r)

{
1− L0

4h̄κ2
0 r2

}
. (15)

The conventional WKB ansatz is assumed for the wave function:

ψ(r) = exp

[
i

h̄

∑
(−ih̄)kSk(r)

]
. (16)

Substituting

yk(r) = ∂Sk(r)

∂r
(17)

and expanding them in powers of h̄, one obtains the set of relations

y0=±
√

2m(E − Veff(r)), (18)

y1=− 1

2y0

(
y′0 + i

L0

r2

)
, (19)
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y2m=− 1

2y0

{
y2

m + y′2m−1 + 2
2m−2∑
k=1

y2m−k yk

}
, (20)

y2m+1=− 1

2y0

{
y′2m + 2

2m−1∑
k=1

y2m+1−k yk

}
. (21)

In the above relationships, prime denotes differentiation with respect to r. Thus y0 turns
out to be the classical momentum, and

y0 =±iκ0h̄ in regions 1 and 3,

y0 =�0h̄ in region 2.

So, the wave function is a linear combination of the form:

ψ(r) =
∑

c± exp

[
i

h̄

∫
dry±(r)

]
, (22)

where

y(r) =
∑

(−ih̄)kyk(r) (23)

with derivatives (to the first order in h̄)

dψ

dr
=

(
i

h̄
S ′0 + S ′1

)
ψ, (24)

d2ψ

dr2
=

{
−S ′20

h̄2 +
i

h̄

(
2S ′0S ′1 + S ′′0

)+ S ′′1

}
ψ. (25)

This gives the complete solution to the Schrödinger equation ( to the first order in h̄ ) as

ψ = 1√
y0

exp

{
i

h̄

∫
y0 dr − iL0

2

∫
dr

y0r2

}
. (26)

Since the radial wave function must vanish at r = 0, the only allowed solution in region 1
is

ψ1 = A√
κ0

exp

{
−

∫ r1

r

κ0 dr − L0

2h̄

∫ r1

r

dr

κ0r
2

}
. (27)

Now we shall make use of the conventional connection formulae for WKB approx-
imation at the turning point r1 [23], namely,

1√
κ(r)

exp

(
−

∫ r1

r

κ(r) dr

)
= 2√

�(r)
sin

{∫ r

r1

�(r) dr + π

4

}
, (28)

1√
κ(r)

exp

(∫ r1

r

κ(r) dr

)
= 1√

�(r)
cos

{∫ r

r1

�(r) dr + π

4

}
. (29)
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Expanding �(r) and κ(r) in terms of �0(r) and κ0(r), and keeping terms up to the
first order in h̄ only, the connection formulae can be cast in the form:

1√
κ0(r)

exp

(
−

∫ r1

r

κ0(r) dr − L0

2h̄

∫ r1

r

dr

κ0(r)r2

)

� 2√
�0(r)

sin

{∫ r

r1

�0(r) dr − L0

2h̄

∫ r

r1

dr

�0(r)r2
+ π

4

}
(30)

1√
κ0(r)

exp

(∫ r1

r

κ0(r) dr + L0

2h̄

∫ r1

r

dr

κ0(r)r2

)

� 1√
�0(r)

cos

{∫ r

r1

�0(r) dr − L0

2h̄

∫ r

r1

dr

�0(r)r2
+ π

4

}
. (31)

The solutions to the Schrödinger equation in regions 2 and 3 are obtained by match-
ing the WKB solutions on either side of the turning points r1 and r2, with the help of the
connection formulae (30) and (31). Thus the solution in region 2 comes out to be

ψ2 = 2A√
�0(r)

sin

{∫ r

r1

�0(r) dr − L0

2h̄

∫ r

r1

dr

�0(r)r2
+ π

4

}
. (32)

To obtain the solution in region 3, ψ2 is written as

ψ2=
∫ r

r1

�0(r) dr − L0

2h̄

∫ r

r1

dr

�0(r)r2
+ π

4

=
∫ r2

r1

�0(r) dr −
∫ r2

r

�0(r) dr − L0

2h̄

∫ r2

r1

dr

�0(r)r2
+ L0

2h̄

∫ r2

r

dr

�0(r)r2
+ π

4

=
(

π

2
+

∫ r2

r1

�0(r) dr − L0

2h̄

∫ r2

r1

dr

�0(r)r2

)

−
(∫ r2

r

�0(r) dr − L0

2h̄

∫ r2

r

dr

�0(r)r2
+ π

4

)

=
(

π

2
+ θ

)
− B, (33)

where

θ =
∫ r2

r1

�0(r) dr − L0

2h̄

∫ r2

r1

dr

�0r2
(34)

and

B =
∫ r2

r

�0(r) dr − L0

2h̄

∫ r2

r

dr

�0r2
+ π

4
. (35)

Substituting (33) into (32) and simplifying,

ψ2 = 2A√
�0(r)

(cos θ cos B + sin θ sin B). (36)
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Using the connection formula at the turning point r2, the solution in region 3 is obtained
as

ψ3 = 2A√
κ0(r)

cos θ exp
(
σ (r)

)+ A√
κ0(r)

sin θ exp
(−σ (r)

)
, (37)

where

σ (r) =
∫ r

r2

κ0(r) dr − L0

2h̄

∫ r

r2

dr

κ0r2
. (38)

Now, the WKB quantization rule is obtained by the constraint ψ(r = r0) = 0,
where r0 is the radius of the confining spherical box. Two cases arise depending on the
size of confinement, i.e.:

(i) there is a single turning point within the box (r1 < r0 < r2);

(ii) both the turning points are within the box (r0 > r2);

thus yielding 2 different quantization rules.

Rule 1 (Extremely small confinement). The size of the box is so small that it admits
only a single turning point, i.e., r1 < r0 < r2.

This modifies the boundary condition to ψ2(r0) = 0. Hence the WKB quantization
condition reads

λ1 − λ2 =
(

n+ 3

4

)
, n = 0, 1, 2, . . . (39)

with

λ1=
∫ r0

r1

�0(r) dr, (40)

λ2= L0

2h̄

∫ r0

r1

dr

�0(r)r2
. (41)

Rule 2 (The confining box is not so small). The size of the box is such that both the
classical turning points lie within it, i.e., r0 > r2.

Hence, in this case the solution of the Schrödinger equation must obey the bound-
ary condition ψ3(r0) = 0, yielding the WKB quantization rule

2 cos θ exp
(
σ (r0)

)+ sin θ exp
(−σ (r0)

) = 0. (42)

Quantization rules (39) and (42) enable one to determine the energy spectrum of
any spatially confined, radial potential, in the framework of WKB approximation.

3. Calculations

In this section, the WKB rules so developed are used to determine the energy spec-
trum of 3 explicit potentials:
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(i) the 3-dimensional harmonic oscillator;

(ii) the hydrogen atom;

(iii) the Hulthén potential;

each confined within an impenetrable spherical box of radius r0. All the 3 potentials
are of tremendous importance in a variety of physical problems, and have been studied
widely. Units used are h̄ = m = 1 so that L0 = l.

3.1. 3-dimensional harmonic oscillator

In this case

V (r) = r2

2
. (43)

Hence the relationship E − Veff = 0 gives the classical turning points at

r1 =
{
E −

√
E2 − l2

}1/2
, (44)

r2 =
{
E +

√
E2 − l2

}1/2
. (45)

Proceeding along the formalism developed above, the energy levels of the enclosed 3-
dimensional harmonic oscillator are computed for various values of the confining pa-
rameter r0, with the help of the mathematical relationships in [24]. The results are
presented in table 1, comparing the energies so obtained (with no modification of the
centrifugal term) denoted by E, with those from the conventional WKB quantization
rules for 3-dimensional confinement (with Langer modification), E(WKB) [18], the di-
rect variational method, E(var) [9], and exact numerical values, E(exact) [9] for the
enclosed 3-dimensional harmonic oscillator.

Table 1
Enclosed 3-dimensional harmonic oscillator (n = nr + l + 1, nr = 0, l = 1).

r0 E E(WKB) E(var) E(exact)

1.0 10.2876 10.2643 10.3188 10.2822
1.5 4.9068 4.9084 4.9169 4.9036
2.0 3.3081a 3.2490 3.2514 3.2469
2.5 2.6835 2.7079a 2.6901 2.6881
3.0 2.5313 2.5310 2.5337 2.5313
4.0 2.5001 2.5001 2.5015 2.5001
5.0 2.5000 2.5000 2.5012 2.5000

a In these cases the size of the rigid spherical box is such that the wall is close to the
turning point, where the WKB approximation is not expected to give good results.
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3.2. Hydrogen atom

The well-known Coulomb potential

V (r) = −1

r
(46)

is known to possess negative energies. However, spatial confinement alters this scenario.
For extremely small confinement, the system is no longer bound. Conditions E > 0, and
E − Veff = 0 gives a single turning point at

rt =
√

1+ 2El2 − 1

2E
. (47)

For all practical purposes, rt is very small, and the eigenenergies of the enclosed system
are obtained from the relationship (39)∫ r0

rt

√
2(E − Veff) dr − l

2

∫ r0

rt

dr√
2(E − Veff)r2

=
(

n+ 3

4

)
π (48)

with

Veff = −1

r
+ l2

2r2
. (49)

However, for bound energies (E < 0), 2 cases may arise, depending on the size of
the confining box: either there is only one turning point inside the box (r1 < r0 < r2), or
confining wall encloses both the turning points (r0 > r2). Let E = −e and Veff = −veff.
The expression E − Veff = 0 gives the roots at

r1= 1

2e

{
1−

√
1− 2el2

}
, (50)

r2= 1

2e

{
1+

√
1− 2el2

}
. (51)

The energy spectrum of the boxed-in hydrogen atom is determined with the help
of the formalism developed above. The results are computed and presented in tabular
form, for the 2p (table 2) and 3d (table 3) states. The energy eigenvalues calculated in
this study, E, are compared with those obtained by the conventional (with LM) confined
WKB approximation developed earlier E(WKB) [18], the direct variational method of
Marin and Cruz, E(var) [9], Varshni’s modification of Marin–Cruz approach, E(Varshni)
[25], and the exact numerical values, E(exact) [25,26].

3.3. Confined Hulthén potential

Screened Coulomb potentials are of tremendous importance in atomic phenomena.
The particular case studied here is the confined Hulthén potential, given by

V (r) = V0
e−δr

1− e−δr
, (52)
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Table 2
Enclosed hydrogen atom – 2p-state (n = nr + l + 1, nr = 0, l = 1).

r0 E E(WKB) E(var) E(Varshni) E(exact)

0.6 49.8448 49.3997 50.401 49.935 49.874
0.8 26.9179 26.5586 27.155 26.910 26.879
1.0 16.5063 16.2590 16.611 16.464 16.446
1.2 10.8828 10.7653 10.999 10.905 10.893
1.4 7.6209 7.4379 7.6857 7.6214 7.6138
1.6 5.5112 5.3928 5.5801 5.5347 5.5295
1.8 4.1512a 4.0693 4.1675 4.1345 4.1308
2.0 3.1513 3.1010 3.1791 3.1547 3.1520
2.2 2.4469 2.4013 2.4641 2.4458 2.4438
2.4 1.9224 1.8815 1.9326 1.9187 1.9173
2.8 1.2129 1.1807 1.2157 1.2075 1.2068
3.0 0.9684 0.9420 0.9694 0.9631 0.9625
3.5 0.5466 0.5371 0.5459 0.5427 0.5424
4.0 0.2894 0.2771 0.2888 0.2872 0.2871
5.0 0.0154 0.0135 0.0155 0.0152 0.0152
7.0 −0.1687a −0.1666 −0.1748 −0.1748 −0.1749

10.0 −0.2269 −0.2256 −0.2369 −0.2377
14.0 −0.2487 −0.2484 −0.2484 −0.2491

a See footnote to table 1.

Table 3
Enclosed hydrogen atom – 3d-state (n = nr + l + 1, nr = 0, l = 2).

r0 E E(WKB) E(var) E(Varshni) E(exact)

1.0 29.8203 29.7306 30.234 29.979 29.935
1.5 12.5321 12.4895 12.692 12.587 12.570
2.0 6.6415 6.6064 6.7182 6.6640 6.6550
2.5 3.9882 3.9658 4.0288 3.9970 3.9920
3.0 2.5863 2.5593 2.6088 2.5887 2.5856
4.0 1.2467 1.2379 1.2532 1.2440 1.2427
5.0 0.6581 0.6489 0.6634 0.6588 0.6582
6.0 0.3617 0.3550 0.3634 0.3609 0.3607
7.0 0.1926 0.1890 0.1945 0.1933 0.1932
8.0 0.0919 0.0897 0.0928 0.0922 0.0921

10.0 −0.0140 −0.0156 −0.0141 −0.0142 −0.0142
12.0 −0.0625 −0.0626 −0.0625 −0.0625 −0.0625
14.0 −0.0862 −0.0860 −0.0862 −0.0862
16.0 −0.0939a −0.0928 −0.0982 −0.0984
20.0 −0.1079 −0.1077 −0.1076 −1.1079

a See footnote to table 1.

where V0 = −Zδ, with Z the atomic number and δ the screening parameter. Taking
Z = 1,

Veff(r) = V (r)+ l2

2r2
. (53)
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Table 4
Confined Hulthén potential (δ = 0.1, n = nr + l + 1).

r0 state nr l E E(exact) E(1/N)

6 2p 0 1 −0.00782 −0.00865 −0.00294
7 2p 0 1 −0.03976 −0.04069 −0.03324
8 2p 0 1 −0.05510 −0.05783 −0.05293
9 2p 0 1 −0.06612 −0.06728 −0.06389

10 2p 0 1 −0.07196 −0.07257 −0.07008
25 2p 0 1 −0.07921 −0.07918 −0.07920

3p 1 1 −0.01384 −0.01475 −0.01295
3d 0 2 −0.01381 −0.01390 −0.01332

50 2p 0 1 −0.07920 −0.07918 −0.07920
3p 1 1 −0.01598 −0.01605 −0.01578
3d 0 2 −0.01450 −0.01448 −0.01450

Table 5
Confined Hulthén potential (δ = 0.2, n = nr + l + 1).

r0 state nr l E E(exact) E(1/N)

8 2p 0 1 −0.01607 −0.01731 −0.01242
9 2p 0 1 −0.02612 −0.02749 −0.02428

10 2p 0 1 −0.03389 −0.03339 −0.03118
25 2p 0 1 −0.04192 −0.04188 −0.04199
50 2p 0 1 −0.04191 −0.04189 −0.04196

Once again the energy eigenvalues are computed for different values of the con-
fining radius r0 and screening parameter δ, and the results presented in tabular form, in
tables 4 and 5, for ease of comparison with those obtained from other approximation
methods, namely, the shifted 1/N expansion method E(1/N) [15], and exact numerical
energies E(exact) [15].

4. Discussions and conclusions

In the present study the WKB approximation technique is used to derive an al-
ternate formalism for quantum systems with radial potentials, confined within a rigid
spherical box of radius r0. Instead of the conventional Langer modification, in this ap-
proach the centrifugal term is decomposed perturbatively (in powers of h̄) into 2 terms,
– the classical centrifugal potential and a quantum correction, following the analysis of
Hainz and Grabert [22]. The unique advantage of this approach is that it requires no
modification of the centrifugal term in the WKB expansion when applied to radial po-
tentials. Moreover, the quantization rules follow naturally from the WKB connection
formulae, and the calculations are straightforward, though somewhat lengthy.

As a testing ground, the analysis is applied explicitly to 3 widely studied con-
fined systems, each of considerable importance in atomic phenomena, namely, the
3-dimensional harmonic oscillator, the hydrogen atom and the Hulthén potential. Each
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system is confined within a rigid spherical box of radius r0. The spatial confinement
imposes the additional boundary condition ψ(r) = 0 at r = r0 on the radial wave
function. This criterion, alongwith the WKB connection formula, gives the quantization
rules for estimating the energy eigenvalues, E. For each case the results are computed
and presented in tabular form, in tables 1–5, for ease of comparison with those obtained
from other approximation methods, namely, the conventional WKB method for confined
systems (using the Langer modification of the centrifugal term [18], variational results
of Marin and Cruz [9], modified form of the same as given by Varshni [25] (in case of
confined hydrogen atom), shifted 1/N expansion method [15] (in case of the confined
Hulthén potential), and exact numerical results.

It is easy to observe from the tables 1–5, that the present formalism works quite
well for all the 3 cases. The energy values are better than the conventional WKB ener-
gies (with Langer modification), as well as the shifted 1/N expansion results, justifying
the perturbative expansion of the centrifugal term even for potentials under hard-wall
confinement. In some cases these energies are even better than the variational results
of Marin and Cruz [9]. This is true for most of the confining radii, except when the
size of the box is close to the turning point. This is expected as the WKB approxi-
mation is not valid close to the turning points. It may be worth mentioning here that
Hainz–Grabert version of the WKB method addresses primarily problems with singular
potentials. Though the harmonic oscillator does not fall in this class strictly, neverthe-
lass, the centrifugal term introduces a singularity at the origin for non-zero l. So the
author found it interesting to check the behaviour of the confined harmonic oscillator
under such an expansion.

Another point worth examining is the effect of the higher order terms. It was shown
in [22] that in contrast to Langer modification, the higher than first order terms gave a
vanishing contribution to the estimate for energy. However, this fact does not hold for
confined potentials as is evident below: expanding in powers of h̄, one obtains

∫ r0

r1

�(r) dr =
∫ r0

r1

�0(r) dr −
∫ r0

r1

L0

2h̄�0r2
dr −

∫ r0

r1

L2
0

8h̄2�3
0r4

dr

−
∫ r0

r1

L3
0

16h̄3�5
0r6

dr − · · · . (54)

Proceeding along analogous lines as above it was found that the eigenvalues ob-
tained in the lowest order became worse when higher order corrections were evaluated.

To conclude, this present analysis of perturbative decomposition of the centrifugal
term into 2 parts – a classical potential and a quantum correction – plays a vital role in
improving the WKB quantisation rule in the first order, thus yielding better estimates of
the energy eigenvalues. Hence this formalism may be useful in determining the energy
spectrum of any 3-dimensional radially-confined problem.
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